import pyterrier as pt
if not pt.started():
pt.init()
systems=[]
names=[]
dataset = pt.get_dataset('msmarco_passage')
bm25_terrier_stemmed = pt.BatchRetrieve.from_dataset('msmarco_passage', 'terrier_stemmed', wmodel='BM25')
systems.append(bm25_terrier_stemmed)
names.append('bm25_terrier_stemmed')
dph_terrier_stemmed = pt.BatchRetrieve.from_dataset('msmarco_passage', 'terrier_stemmed', wmodel='DPH')
systems.append(dph_terrier_stemmed)
names.append('dph_terrier_stemmed')
bm25_terrier_stemmed_docT5query = pt.BatchRetrieve.from_dataset('msmarco_passage', 'terrier_stemmed_docT5query', wmodel='BM25')
systems.append(bm25_terrier_stemmed_docT5query)
names.append('bm25_terrier_stemmed_docT5query')
bm25_terrier_stemmed_deepct = pt.BatchRetrieve.from_dataset('msmarco_passage', 'terrier_stemmed_deepct', wmodel='BM25')
systems.append(bm25_terrier_stemmed_deepct)
names.append('bm25_terrier_stemmed_deepct')
43 topics used in the TREC Deep Learning track Passage Ranking task, with deep judgements
pt.Experiment(
systems,
pt.get_dataset('msmarco_passage').get_topics('test-2019'),
pt.get_dataset('msmarco_passage').get_qrels('test-2019'),
batch_size=200,
drop_unused=True,
eval_metrics=['ndcg_cut_10'],
names=names)
43 topics used in the TREC Deep Learning track Passage Ranking task, with deep judgements
pt.Experiment(
systems,
pt.get_dataset('trec-deep-learning-passages').get_topics('test-2020'),
pt.get_dataset('trec-deep-learning-passages').get_qrels('test-2020'),
batch_size=200,
drop_unused=True,
eval_metrics=['ndcg_cut_10'],
names=names)
6800 topics with sparse judgements
pt.Experiment(
systems,
pt.get_dataset('msmarco_passage').get_topics('dev.small'),
pt.get_dataset('msmarco_passage').get_qrels('dev.small'),
batch_size=200,
drop_unused=True,
eval_metrics=['recip_rank'],
names=names)